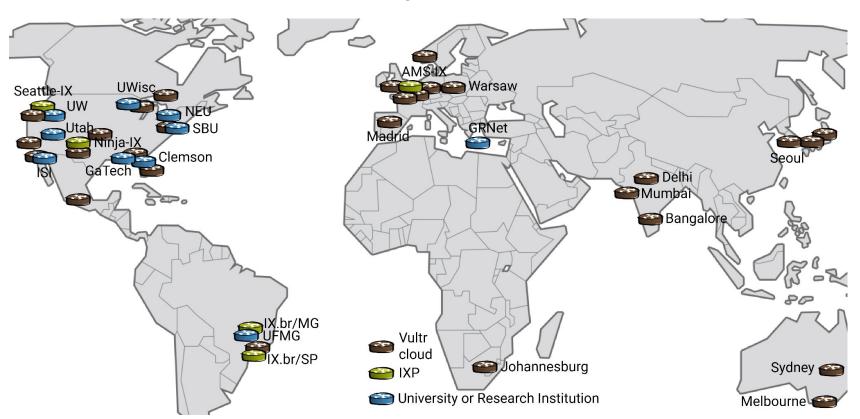
The PEERING testbed: Internet Routing Experiments for the Cloud Era

Ethan Katz-Bassett, Ítalo Cunha

Ezri Zhu, Jiangchen Zhu, Tom Koch

Leonardo Oliveira, Marcel Mendes

EzriCloud (AS206628)


What is PEERING?

 A network (aka autonomous system/AS) with routers around the world & BGP connections to 1000s of commercial networks

eino Unido Bielorrússia **PEERING** routers at universities & IXPs Polônia AMS-IX Ucrânia **UWisc** UW Romênia Espanha Unidos Turquia Portugal **GRNet** Oceano Síria Clemson Tunísia Mediterraneo USC Phoenix-IX Iraque Marrocos Argélia Gatech Líbia Egito Saara Arál México Ocidental Sauc Mauritânia Mali Níger Sudão Chade Bürkina Nigéria Sudão Etiópia Venezuela do Sul Colômbia Som University Routers in 15 locations Brasil IXP 3 continents ambigue **UFMS**^{GO} Planned IX.br/MG Mada A few thousand peer ASes Paraguai IX.br/SP Oceano África Atlântico Sul

do Sul

PEERING sites - Deployed on Vultr data centers

PEERING sites - Deployed at Cloudflare PoPs

What is PEERING?

- A network (aka autonomous system/AS) with routers around the world & BGP connections to 1000s of commercial networks
- Experiments have (almost) full control of control & data planes:
 - Control BGP announcements to influence how other networks route towards experiment
 - Select outgoing routes towards Internet destinations
 - Exchange traffic with Internet destinations
- Open to the research community
 - Propose experiment at: https://peering.ee.columbia.edu/

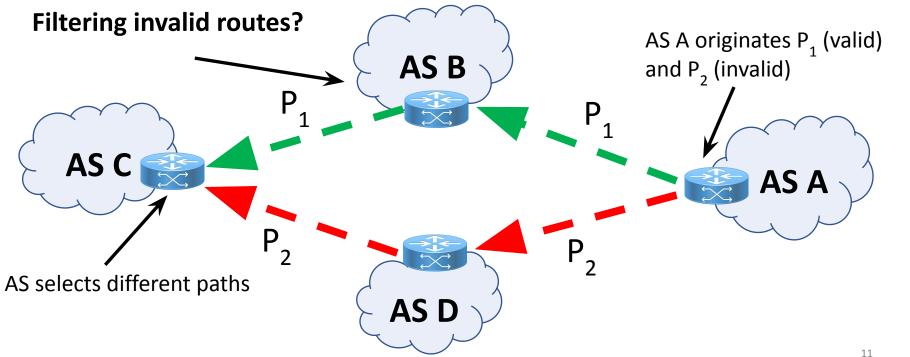
PEERING site capabilities

	# sites	# neighbor ASes	exchange traffic	control BGP announcements	select outgoing routes
universities	10	~10	Y	Y	Y
IXPs	5	~1500	Y	Y	Y
Vultr	32	~6000	Y	Y	N
Cloudflare	335	~13,000	Y	N	N

Why did we build the PEERING testbed?

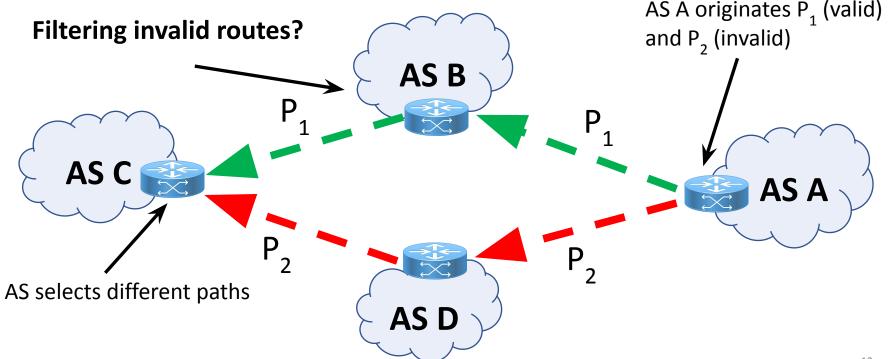
- 1. BGP contributes to many of the Internet's **fundamental problems** BGP's design results in:
 - Security vulnerabilities such as hijacking and spoofing
 - Poor performance due to circuitous routes
 - Transient outages due to delayed convergence
 - Persistent outages due to protocol interactions
 - ... (the list goes on...)

Why did we build the PEERING testbed?

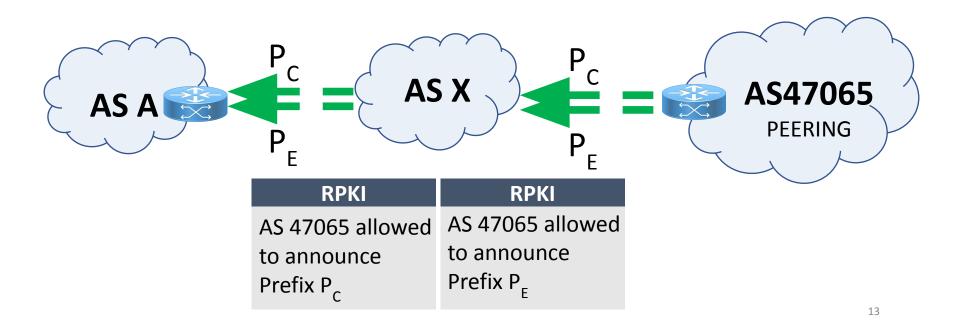

- 1. BGP contributes to many of the Internet's **fundamental problems**
- 2. **Limited existing tools** for BGP research

Why did we build the PEERING testbed?

- 1. BGP contributes to many of the Internet's **fundamental problems**BGP's design results in:
 - Security vulnerabilities such as hijacking and spoofing
 - Poor performance due to circuitous routes
 - Transient outages due to delayed convergence
 - Persistent outages due to protocol interactions
 - ... (the list goes on...)


Can we identify ASes that filter [RPKI] invalid routes... without PEERING?

- Find cases when an AS announces both a valid prefix and an invalid prefix
- Identify vantage points that use different routes to the two prefixes


Problem: The experiment is uncontrolled

- 1. AS A could be announcing P1 differently from P2
- 2. And/or AS C could choose different routes for reasons unrelated to RPKI

Can we identify ASes that filter [RPKI] invalid routes... with PEERING?

Controlled experiment: Jointly manipulate route announcements and RPKI validity, observe impact.

Can we identify ASes that filter [RPKI] invalid routes... with PEERING?

Can we identify ASes that filter [RPKI] invalid routes... with PEERING?

Controlled experiment: Jointly manipulate route announcements and RPKI validity, observe impact. AS X **AS47065 AS A ASY RPKI RPKI** AS 47065 allowed AS 61574 allowed to announce to announce Prefix P_c Prefix P_F 15

Use cases of the PEERING testbed

PEERING used for experiments in 50+ publications with total of 3500+ citations

SIGCOMM papers using the PEERING testbed

- 2023: PAINTER: Ingress Traffic Engineering & Routing for Enterprise Cloud Networks
- 2022: Continuous In-Network Round-Trip Time Monitoring
- 2018: Internet Anycast: Performance, Problems and Potential
- 2017: Bootstrapping evolvability for inter-domain routing with D-BGP
- 2017: Engineering Egress with Edge Fabric: Steering Oceans of Content to the World
- 2016: ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking
- 2014: (ARROW) One Tunnel is (Often) Enough
- 2014: SDX: A Software Defined Internet Exchange
- 2013: PoiRoot: Investigating the Root Cause of Interdomain Path Changes
- 2012: LIFEGUARD: Practical Repair of Persistent Route Failures

Use cases of the PEERING testbed

PEERING used for experiments in 50+ publications with total of 3500+ citations

Common reasons experiments use PEERING:

- 1. Controlled experiments: control aspects of routing as a means to conduct controlled experiments or systematically generate ground truth data.
- 2. In-the-wild demonstrations, especially of TE systems and of attacks/defenses.
- 3. Measurements of hidden routes: BGP routes are only measurable if they are used, providing limited visibility into backup routes, route diversity, routing policies, or the underlying topology. PEERING can manipulate which routes are available.

Data collection

- Looking Glass on PEERING routers so experimenters can view routes
 - Especially useful for debugging your own experiments to check your own experiments
- Traceroutes:
 - 48 teams of 400 RIPE Atlas probes run traceroute to PEERING prefixes every 20 minutes
 - Can configure exact source probes and destination PEERING prefixes/addresses
- Route monitoring
 - Monitor route visibility of PEERING announcements from RIPE RIS
 - https://github.com/PEERINGTestbed/peeringmon_exporter
- TODO: Feed routes to RouteViews/RIS/Gill
 - Announcements that experiments make
 - Routes we learn from the Internet

Challenges with operating PEERING

- Requires dealing with lots of issues, most of which are individually small (maintaining testbed, dealing with ASes, supporting researchers)
 - O How to fund?
 - O How to staff?
- Deploying new sites (especially physical sites) can be a headache
 - We are an unusual network to deal with: our needs & means are low
 - Universities make it hard to pay recurring hosting costs
- Many moving parts, relationships with many ASes
 - Requires goodwill of operator community

Summary of PEERING

- A network (aka autonomous system/AS) with routers around the world & BGP connections to 1000s of commercial networks
- Experiments have (almost) full control of control & data planes:
- Open to the research community
 - Propose experiment at: https://peering.ee.columbia.edu/
- Enables controlled and replicable interdomain experiments
- Would benefit from new funding models for long-term maintenance

Summary of PEERING

- A network (aka autonomous system/AS) with routers around the world & BGP connections to 1000s of commercial networks
- Experiments have (almost) full control of control & data planes:
- Open to the research community
 - Propose experiment at: https://peering.ee.columbia.edu/
- Enables controlled and replicable interdomain experiments
- Would benefit from new funding models for long-term maintenance